# **Energy and Emissions Forecast for Vermont:**

Mitigation Pathways



### **Modeling Tool**

- Low Emissions Analysis Platform (LEAP)
  - A software tool for quantitative modeling of:
    - Energy systems
    - Pollutant emissions from energy and non-energy sources
    - Health impacts
    - Sustainable development indicators
    - Costs and benefits
    - Related externalities
  - Developed by SEI
  - Distinguished by data and methodological flexibility, graphical user interface, built-in accounting features (energy, emissions, costs, natural resources)
  - Thousands of users across 190+ countries



### https://leap.sei.org



### **Model Scope and Methods**

- Modeling period: **2015-2050**, with scenario(s) beginning in 2020
- Model covers all energy demand, energy supply, and GHG emissions in Vermont (all sectors including emissions from energy and nonenergy sources)
- GHG emissions converted to CO<sub>2</sub>-equivalent using 100-year global warming potentials from Intergovernmental Panel on Climate Change's Fourth Assessment Report



# **Business-as-Usual Data Sources and Results**

### **On-Road Transportation**

#### What's Included?

- Registrations of publicly and privately owned road vehicles from VDMV
- Historical vehicle registrations from UVM TRC (Dowds) and FHWA
- Historical and forecasted VMT from UVM TRC (Sullivan)
- Fuel economy and mileage over vehicle lifetime from VISION 2020 model, including ethanol and biodiesel blends
- EV sales from VELCO (light-duty) and multi-state MOU (medium- and heavy-duty)
- Other vehicle sales forecasts aligned with AEO 2020
- GHG emissions from EPA's SIT and GREET

### **On-Road Transportation: Business-as-Usual Sales**





### **On-Road Transportation: Business-as-Usual Sales**



#### **Heavy Duty Sales Shares by Technology** 100% of sales 50% 0% 2020 2030 2040 2050 ■ Combination Natural Gas Fuel Cell Combination EV Combination I NG Combination Diesel ■ Single Unit Gasoline PHEV ■ Single Unit Diesel PHEV ■ Single Unit LNG ■ Single Unit Conventional

### **On-Road Transportation: Business-as-Usual Results**



### **On-Road Transportation: Business-as-Usual Results**





### **On-Road Transportation: Business-as-Usual Results**



### **Non-Road Transportation**

#### What's Included?

- Historical and forecasted rail, aviation, navigation, "other" fuel shares from AEO 2020
- Total energy consumption per capita derived from SEDS, and population forecasts from VT DOH and UVM TRC
- GHG Emissions from EPA's SIT

## Non-Road Transportation: Business-as-Usual Results





### **Commercial Buildings**

#### What's Included?

- Based on EIA CBECS
  - Floorspace for "pre-2007" buildings without retrofits, with HVAC retrofit, with insulation retrofits, "post-2007" buildings
  - Within each, penetration of different building technologies and energy use per square foot
  - Floorspace projections from AEO 2020 for New England, prorated for Vermont GDP from US BEA
- Adjustments to technology shares within space heating, lighting, water heating from PSD/Cadmus
- Estimated annual heat pump additions from VELCO/Itron
- Energy efficiency program thermal fuel savings and declining electricity use per square foot from EVT,
   total natural gas efficiency from Vermont PUC
- GHG emissions from EPA's SIT

## Commercial Buildings: Business-as-Usual Assumptions



■ Pre 2007 with Insulation Retrofit

■ Post 2007 of Fully Retrofit

■ Pre 2007 with HVAC Retrofit

Pre 2007

<sup>\*</sup> Building category labels refer to construction year (ex. "Pre 2007" are buildings constructed before 2007).







■ Space Cooling ■ Water Heating ■ Cooking

Thousand Metric Tonnes CO<sub>2</sub>e

■ Space Heating



Miscellaneous





### Residential Buildings

#### What's Included?

- Based on EIA RECS
  - Includes shares of housing units in urban vs. rural areas, by housing type and tenure, having different energy end uses and technologies
  - Technology and end use penetrations from VT Residential Market Assessment and RECS
  - Equipment efficiencies for non-wood fuels from RECS and VT Residential Market Assessment
  - Total housing units from Census Bureau, population forecast harmonized with UVM TRC
- VT Residential Fuel Assessment: total wood and pellet consumption in Vermont
- NESCAUM: wood and pellet stove combustion efficiencies
- VT Residential Market Assessment: technology penetration in new housing units

### Residential Buildings (continued)

#### What's Included?

- Projected energy efficiency program savings by end use from EVEE
- Projected building shell retrofits (weatherization) from EVR and VGS, with building shell improvements in new construction from PSD/EVEE
- Changes to HDD and CDD from Northeast Regional Climate Center
- Projected changes to device efficiencies, and changes in shares of households using different cooking technologies from AEO 2020
- Estimated annual heat pump additions from VELCO/Itron, each displacing 40% of heat provided by a furnace or boiler (other devices meeting higher heating shares introduced in mitigation measures)
- GHG emissions from EPA's SIT

## Residential Buildings: Business-as-Usual Assumptions













### Industry

#### What's Included?

- Historical energy consumption by fuel from SEDS, with consumption forecasts aligned with AEO 2020
- AEO 2020: forecasted growth in final demands for each fuel
- Adjustments in natural gas, thermal fuels and electricity consumption to include forecasted energy efficiency programs from PUC and EVT
- GHG emissions from EPA's SIT

### **Industry: Business-as-Usual Results**



### **Industry: Business-as-Usual Results**

Biodiesel

■ Residual Fuel Oil



Lubricants

■ Cellulosic Ethanol

### **Electric Generation and Emissions: Methods**

#### "Vermont-sized version of ISO - NE grid"

- Existing and planned Vermont plants and remainder of ISO NE plants grouped separately, by technology
  - All on-grid capacity derated according to Vermont's historical fraction of New England retail electricity sales (<5% of New England-wide sales)</li>
- Imports grouped by origin (NY, QC, NB)
- Energy requirements are met in each "time slice"
  - 192 pseudo-hourly time slices per year: [24 hours]  $\times$  [weekend vs. weekday]  $\times$  [4 seasons]
  - Model estimates consumption-based electricity emissions by accounting for existing purchase contracts, before the remainder of uncontracted (rest-of-system) resources are dispatched to meet state demand
  - Production-based emissions may also be estimated, but not shown here

### **Electric Generation and Emissions: Methods**

#### Least-cost capacity expansion and dispatch, under the following constraints:

- Demand (and 8% energy loss from transmission) satisfied
- Planning reserve margin maintained
- Sufficient renewable energy production to meet Vermont's Tier I and II RPS (no representation of RECs separately from renewable kWh)
- Existing energy purchase contracts enforced, assumed to expire on current end date



Calculations are performed using NEMO optimization software, integrated into LEAP

## **Electric Generation and Emissions: Key Data and Forecast Sources**

**Existing and Planned Capacity:** EIA-860 Form, Vermont SOP, ISO – NE BTM Forecast

**Existing Purchase Contracts for Vermont Utilities: PSD** 

**System Reserve and Capacity Adequacy:** ISO – NE capacity supply obligations and net installed capacity requirement (NICR)

**Plant Generation Characteristics:** EIA-923 Form, various

Plant Costs: NREL, AEO, various

**Current and Projected System Load** (used for all electricity consumption except heat pumps and electric

*vehicles)*: ISO – NE loads

**GHG Emissions:** eGRID

### **Electricity Mix in Business-as-Usual Scenario**



<sup>\*</sup> Electricity requirements illustrate Vermont demand plus transmission and distribution loss. Additional electricity production is considered surplus.

### **Detail: Sector Contributions to Electric Load**



#### Average Electric Load in 2050, BAU



<sup>\*</sup> Megawatts displayed show average power demand for each time slice, **gross** of BTM solar.

### **Electricity Modeling: Interpretation Notes**

Since Vermont's electricity supply comes from a mix of regional and local sources, some choices have been made to present Vermont-specific electricity sector results.

- **BTM Solar:** Treated as a supply resource, *not a load reducer*. 100% of Vermont-located BTM PV capacity is used to meet Vermont electricity requirements, but only a portion of rest-of-ISO BTM PV capacity meets Vermont's needs through the (uncontracted) system mix.
- On-Grid Capacity: Installed capacity used to serve Vermont is the minimum of a) derated capacity (roughly 5% of nameplate) or b) whatever is necessary to fulfil existing energy procurement contracts (up to 100% of nameplate. This can make modeled capacity results difficult to interpret, so they are not presented.

### **Non-Energy GHG Emissions Baseline**

- Historical emissions from EPA's SIT default data for Vermont, and AQCD
- Forecasts developed by indexing emissions to state population, or, using historical average growth rates observed within a given subsector
- Further adjustments to historical and forecasted emissions in LULUCF and agriculture from EFG/Cadmus



### GHG Emissions, Business-as-Usual



### **Inclusion of Non-GHG Emissions**

- Emission factors specified as mass per unit of energy consumed, or per distance of vehicle travel
- GHG emissions expressed as mass of each GHG, or in CO<sub>2</sub>-equivalent with any choice of Global Warming Potential (GWP, IPCC Fourth Assessment Report values used by default)
- Non-GHG criteria emissions and other air pollutants expressed as mass of each individual pollutant
- Wide range of data sources are used, including IPCC, EPA SIT, AP42, eGRID, GREET, SEI, NESCAUM, EMEP/EEA

| Pollutant                                                                                                    | Details of inclusion in model                                                                                            |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| CO <sub>2</sub> from fossil fuels, CO <sub>2</sub> from biogenic sources, CH <sub>4</sub> , N <sub>2</sub> O | Included for all sectors and fuels                                                                                       |
| CO                                                                                                           | Included for all sectors and fuels                                                                                       |
| NO <sub>2</sub> or NO <sub>x</sub> , depending on detail provided in source                                  | Included for all sectors and fuels                                                                                       |
| SO <sub>2</sub>                                                                                              | Included for all sectors and fuels                                                                                       |
| PM2.5                                                                                                        | Included for all sectors and fuels                                                                                       |
| Lead                                                                                                         | Included only for combustion of coal, oil, wood/wood waste, and MSW for power generation                                 |
| Non-methane VOCs                                                                                             | Included for all sectors and fuels                                                                                       |
| O <sub>3</sub>                                                                                               | Not included explicitly; both NOx and NMVOC emissions included instead                                                   |
| Black carbon                                                                                                 | Included for all liquid transport fuels, all fuels consumed in households, and all remaining wood and biomass combustion |
| Other toxics                                                                                                 | Not included                                                                                                             |

# **Cross-Cutting Cost Assumptions**

### **General Treatment of Costs in Modeling**

Scenarios may be compared by their energy requirements, emissions of GHGs and other pollutants, and by their costs (or benefits) relative to one another

- Some costs are specified uniquely within some scenarios, or only for technologies/end-uses that vary across scenarios
  - Permits cost-benefit comparisons between two scenarios.
- Other cost inputs (such as fuel supply costs) are included for all scenarios, allowing the model to calculate differences internally. These are cross-cutting cost assumptions.

### **Fuel Costs for all Scenarios**



# Fuel Prices Delivered to Point of Use, for Other Fuels



<sup>\*</sup> For comparison, the natural gas price is shown in both charts.

### **Electric Sector Costs for all Scenarios**

- Electricity pricing is endogenous in the model: depends on the mix of power plants and plant dispatch
- Each technology assigned unitized capital, operation & maintenance costs
- Additional system-wide \$84/kW<sub>peak</sub> assumed for transmission and distribution upgrades
- Capital costs are overnight and include grid connection

#### **Electric Generation Capital Costs**



<sup>\*</sup> FLH = full-load hours, the number of hours at rated output capacity that a battery may provide

### **Monetary Year**

- All costs are expressed in real 2019 US dollars unless otherwise specified (conversions performed using US BEA data)
- Where applicable, present values of future costs are discounted to 2019 monetary year at 2%/year

# Individual Mitigation Options

...next, Mitigation Scenarios

### **Organization of this Section**

- For consistency, individual mitigation options are characterized using three categories: saturation, performance, cost
- Limited business-as-usual (baseline, BAU) assumptions are provided as counterfactuals for mitigation scenario changes (BAU assumptions subject of earlier presentations)

|             | Scenario Changes                                                                                                                                                      | Business-as-Usual Comparison                                                                       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>How much of the new measure or technology is<br/>in this scenario? By when?</li> </ul>                                                                       | <ul> <li>What does the measure displace? What was<br/>the business-as-usual assumption?</li> </ul> |
| Performance | <ul> <li>What are the energy or environmental attributes of the new technology?</li> </ul>                                                                            | <ul> <li>How well did the alternative<br/>technolog(y/ies) perform?</li> </ul>                     |
| Cost        | <ul> <li>What cost assumptions are assigned in this<br/>scenario? What are the costs or savings of the<br/>new technologies relative to business-as-usual?</li> </ul> | <ul> <li>What were the cost assumptions for displaced technologies?</li> </ul>                     |

## **Residential Building Shell Improvements**

|             | Scenario Changes                                                                                                                                                                                                                                                                                                           | Business-as-Usual Comparison                                                                                                                                                                                                                                                                        |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>Variant 1: 72k cumulative retrofits by 2030, 243k retrofits by 2050, aligned with 10,770 retrofits/year by 2040 based on EVT "High Scenario" weatherization forecast and VGS forecast</li> <li>Variant 2: 120k retrofits by 2030 based on "Weatherization at Scale" initiative, 243k retrofits by 2050</li> </ul> | <ul> <li>86,700 cumulative residential retrofits by 2050, aligned with 2,435 retrofits/year reached by 2040 from EVT "Low Scenario" weatherization forecast and VGS forecast</li> <li>Includes multi-family (3E Thermal) and single-family retrofits (from EVT, BED, VGS and low income)</li> </ul> |
| Performance | <ul> <li>Weatherizations result in average useful energy* savings (from reduced air leakage, etc.) of 20% and 38%, for single- and multi-family households respectively, assumed based on PSD<sub>1</sub></li> </ul>                                                                                                       |                                                                                                                                                                                                                                                                                                     |
| Cost        | <ul> <li>Average weatherization retrofit cost \$7,405/single-family household, \$6,000/apartment (2-4 units), \$3,000/apartment (5+ units) based on PSD<sub>2</sub></li> </ul>                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |

<sup>\*</sup> Useful, or "delivered" energy, refers to the heat energy required to maintain an interior temperature. It is different than the final energy (gas, oil, electricity) consumed in a building.

### **Detail: Residential Weatherization**

### **Example of rural housing type**

#### **Sample Weatherization Retrofits for Rural Single-Family Detached Homes**



### **Heat Pumps for Residential Space Conditioning**

|            | Scenario Changes                                                                                                                                                                                                   | Business-as-Usual Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation | <ul> <li>Variant 1: By 2040, high-efficiency air- and ground-source heat pumps (ASHPs and GSHPs) supply 80% of home heating needs</li> <li>Variant 2: Heat pumps meet 70% of home heating needs by 2045</li> </ul> | <ul> <li>Approximately 127k heat pumps deployed by 2050 (mix of ducted, single- and two-head mini-splits with total heating load equivalent to 90% that of VELCO "medium" forecast)</li> <li>Residential heat pumps are 89% air-source, remainder ground-source</li> <li>Centrally-ducted ASHPs provide 100% of displaced heat load provided by gas, oil and propane furnaces</li> <li>Single- and two-head heat pumps displace remaining heating technologies, providing 40% and 66% (respectively) of displaced heating load</li> </ul> |

### **Heat Pumps for Residential Space Conditioning**

|             | Scenario Changes                                                                                                                                                                                                                   | Business-as-Usual Comparison           |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Performance | • Single-head and ducted ASHP COP of 2.6, two-hea                                                                                                                                                                                  | ad ASHP COP of 2.3, GSHP COP of 4.5    |
| Cost        | <ul> <li>Single- and two-head ASHP installed cost of \$6,10 annual maintenance of \$72.5</li> <li>Ducted ASHP installed cost of \$8,500, lasting 18 yes</li> <li>GSHP installed cost of \$17,050, lasting 14 years with</li> </ul> | ears with annual maintenance of \$72.5 |

## **Heat Pumps for Commercial Space Conditioning**

|             | Scenario Changes                                                                                                                                                         | Business-as-Usual Comparison                                                                                                                                                                                                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>Variant 1: By 2040, air-source heat pumps heat 80% of commercial floorspace</li> <li>Variant 2: Heat pumps meet 70% commercial heating needs by 2045</li> </ul> | <ul> <li>Approximately 24k heat pumps deployed by 2050 (total heating load equivalent to 10% that of VELCO "medium" forecast)</li> <li>Commercial heat pumps from VELCO forecast are entirely air-source</li> <li>Commercial ASHPs provide 100% of displaced heat load provided by gas, oil and propane boilers</li> </ul> |
| Performance | <ul> <li>Average energy consumption per device 2,085 kW (cooling mode)</li> <li>Commercial heat pumps consume 16-27 kBTU/ft²</li> </ul>                                  |                                                                                                                                                                                                                                                                                                                            |
| Cost        | <ul> <li>Commercial heat pump serving 3000 ft<sup>2</sup> installed of<br/>maintenance of \$310</li> </ul>                                                               | cost of \$7,550, lasting 21 years with annual                                                                                                                                                                                                                                                                              |

## **Detail: Heating and Cooling Energy Use**



# **Advanced Wood Heating**

|             | Scenario Changes                                                                                                                                                                                                                                                                                                                                                                                                                   | Business-as-Usual Comparison |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Saturation  | <ul> <li>Variant 1: By 2045, advanced pellet boilers replace 20% of residential and commercial propane and oil boilers</li> <li>Variant 2: Advanced pellet boilers replace 25% of residential and 30% of commercial propane and oil boilers</li> <li>For existing buildings (classified as households built after 2015 and commercial floorspace added after 2007), pellet boilers displace only 90% of the alternative</li> </ul> | No advanced pellet boilers   |
| Performance | <ul> <li>Advanced pellet boilers are 86% efficient</li> <li>In commercial sector, this translates into 76-95 kBTU/ft², depending on building shell</li> </ul>                                                                                                                                                                                                                                                                      |                              |
| Cost        | <ul> <li>Residential pellet boiler installed cost of \$20k, last</li> <li>Commercial pellet boiler installed cost of \$65k, last per 6900 ft² commercial space</li> </ul>                                                                                                                                                                                                                                                          | •                            |

## **Commercial District Heating**

|             | Scenario Changes                                                                                                                                                                                                                                                        | Business-as-Usual Comparison |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Saturation  | <ul> <li>In 2027, McNeil generating station captures<br/>170,000 MMBTU/year waste heat for<br/>commercial sector use</li> <li>Additional dedicated wood waste heat plants<br/>are added in 2030, 2035 and two in 2040, each<br/>producing 170,000 MMBTU/year</li> </ul> | No district heating.         |
| Performance | Dedicated heat production is 86% efficient, neglecting distribution loss                                                                                                                                                                                                |                              |
| Cost        | Heat delivered through district heating network costs 17 USD/MMBTU                                                                                                                                                                                                      |                              |









### **Example of urban housing type**



### **Example of urban housing type**



### **Example of urban housing type**





### **Example of rural housing type**

#### Rural Single-Family Detached Home Heating Technologies, BAU



### **Example of rural housing type**

#### Rural Single-Family Detached Home Heating Technologies, HP Variant 1



### **Example of rural housing type**

#### Rural Single-Family Detached Home Heating Technologies, AWH Variant 1



## **Heat Pumps for Water Heating**

|             | Scenario Changes                                                                                                                                                                                                                                           | Business-as-Usual Comparison                                                                                                                                                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>By 2035, hot water heat pumps (HWHPs) meet<br/>all household and commercial water heating<br/>needs previously met by fossil fuels</li> </ul>                                                                                                     | <ul> <li>0.2-6.5% of household water heating needs<br/>met by heat pumps, depending on building<br/>type, no change over time</li> <li>No commercial hot water heat pumps</li> </ul> |
| Performance | <ul> <li>High-efficiency residential hot water heat pump COP of 3.55</li> <li>Commercial hot water heat pumps consume 4.9 kBTU/ft², reaching 4.3 kBTU/ft² by 2050</li> </ul>                                                                               |                                                                                                                                                                                      |
| Cost        | <ul> <li>Residential high-efficiency HWHP installed cost of \$2,475, lasting 13 years with annual maintenance of \$20</li> <li>Commercial HWHP serving 11,695 ft² installed cost of \$50,950, lasting 15 years with annual maintenance of \$100</li> </ul> |                                                                                                                                                                                      |

# **Clean Cooking**

|             | Scenario Changes                                                                                                         | Business-as-Usual Comparison                                                                                                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>By 2035, electricity replaces fossil fuels for<br/>cooking in residential and commercial buildings</li> </ul>   | <ul> <li>Electric stoves and ovens in 48-100% of households, depending on building type</li> <li>41% of commercial space uses electric cooking appliances</li> <li>Little or no change over time</li> </ul> |
| Performance | <ul> <li>Households consume 186-584 kWh/year, depend</li> <li>On average, commercial buildings consume 0.8 kV</li> </ul> |                                                                                                                                                                                                             |
| Cost        | <ul> <li>Equipment cost difference between stove types a differences in fuel costs</li> </ul>                            | ssumed to be negligible; costs arise entirely from                                                                                                                                                          |

# **Phasing Out Internal Combustion Engines**

|             | Scenario Changes                                                                                                                                                                                                                                                                     | Business-as-Usual Comparison                                                                                                                                                                                     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>Variant 1: By 2033, all sales of new on-road vehicles are battery electric vehicles (BEVs)</li> <li>Variant 2: All sales of new on-road vehicles are BEVs by 2040</li> <li>For light-duty cars and trucks, BEVs are divided among 100-, 200- and 300-mile ranges</li> </ul> | <ul> <li>Sales remain modest: by 2050, only 41% of light-duty sales and 7.5% of medium- and heavy-duty sales are BEVs</li> <li>Based on VELCO "low" EV forecast, electrifying 35% of vehicles by 2050</li> </ul> |
| Performance | Electric vehicles consume less energy per mile than their fossil-fuel counterparts                                                                                                                                                                                                   |                                                                                                                                                                                                                  |
| Cost        | <ul> <li>Individual technologies in each weight class are assigned separate costs (light-duty EV cost<br/>examples shown on subsequent slides)</li> </ul>                                                                                                                            |                                                                                                                                                                                                                  |

### **Detail: Light-Duty Cars and Trucks by Technology**



#### LDVs by Technology, Mitigation Variant 1



EV A/B/C = battery electric vehicles with range up to 100/200/300+ miles.

PHEV A/B = plug-in hybrid vehicles with electric range 10+/40+ miles

### **Detail: Light-Duty Cars and Trucks by Technology**



#### LDVs by Technology, Mitigation Variant 2



EV A/B/C = battery electric vehicles with range up to 100/200/300+ miles.

PHEV A/B = plug-in hybrid vehicles with electric range 10+/40+ miles

# Detail: Medium- and Heavy-Duty Vehicles by Technology





# Detail: Medium- and Heavy-Duty Vehicles by Technology





### **Detail: Example Light-Duty Vehicle Costs**





<sup>\*</sup> Only a selection of vehicle technologies are presented here, for light-duty cars and trucks only. Vehicle costs from VISION 2020 and Cadmus.

### **EV Charging Costs**

#### **Average Charger Cost for LDV and MDV EVs**



Costs per vehicle from Cadmus, derived from cost per charger and estimated chargers per vehicle, for:

- Residential Level 1
- Residential/Public/Workplace Level 2
- Public DC fast-charger
- Medium-duty

Heavy-duty chargers assumed to cost \$150k/vehicle (not shown in chart), dropping to \$111k by 2050.

## **E15 Ethanol in Transport**

|             | Scenario Changes                                                                                                                                                                         | Business-as-Usual Comparison                                                                           |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>By 2040, ethanol blend in all motor gasoline<br/>reaches 15%-by-volume (E15)</li> </ul>                                                                                         | <ul> <li>Ethanol constitutes 10.2%-by-volume in<br/>motor gasoline, rising to 12.1% in 2050</li> </ul> |
| Performance | <ul> <li>Ethanol emits "biogenic" carbon dioxide, which is assigned a global warming potential (GWP) of<br/>zero</li> </ul>                                                              |                                                                                                        |
| Cost        | <ul> <li>Ethanol for blending costs 25.1 USD/MMBTU in 2019, rising to 44.9 USD/MMBTU in 2050</li> <li>Existing equipment assumed to operate using E15 without additional cost</li> </ul> | <ul> <li>Pure gasoline costs 23.8 USD/MMBTU in<br/>2019, rising to 30.9 USD/MMBTU in 2050</li> </ul>   |

### **VMT Reductions**

|             | Scenario Changes                                                                                                                                                                                                                                                    | Business-as-Usual Comparison                                                                                                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>Measure encompasses urban densification, traffic demand management, active transportation and shifting to public transport</li> <li>By 2050, annual vehicle-miles traveled (VMT) are reduced by 10% across all vehicle classes and technologies</li> </ul> | <ul> <li>Annual mileage for each weight class is:</li> <li>13,852 for passenger cars</li> <li>15,300 for light trucks</li> <li>22,451-36,829 for MDVs</li> <li>21,016-98,228 for HDVs</li> </ul> |
| Performance | No change to vehicle performance per mile traveled                                                                                                                                                                                                                  |                                                                                                                                                                                                  |
| Cost        | • 10% VMT reductions assumed to be achievable for \$250 million USD/year                                                                                                                                                                                            |                                                                                                                                                                                                  |

### **Detail: VMT Reductions**

#### **Total Vehicle-Miles Traveled by Class, VMT Reduction Measure**



## **B20** Biodiesel and Heating Oil

|             | Scenario Changes                                                                                                                                                                   | Business-as-Usual Comparison                                                                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>By 2050, biodiesel blend in industrial and<br/>transport diesel, building heating oil reaches<br/>20%-by-volume (B20)</li> </ul>                                          | <ul> <li>Industry and transport consume 4.0%-by-volume biodiesel blend, rising to 7.5% by 2050</li> <li>No blending within heating oil</li> </ul> |
| Performance | Biodiesel emits "biogenic" carbon dioxide, which is assigned a GWP of zero                                                                                                         |                                                                                                                                                   |
| Cost        | <ul> <li>Pure biodiesel costs 32.4 USD/MMBTU in 2019, rising to 42.2 USD/MMBTU in 2050</li> <li>Existing equipment assumed to operate using B20 without additional cost</li> </ul> | <ul> <li>Diesel costs 24.9 USD/MMBTU in 2019,<br/>rising to 32.9 USD/MMBTU in 2050</li> </ul>                                                     |

### Variant: B100 Biodiesel in Heating Oil

|             | Scenario Changes                                                                                                                                                                                                            | Business-as-Usual Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>By 2040, building heating oil reaches 100%<br/>biodiesel (B100)</li> </ul>                                                                                                                                         | No blending within heating oil                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Performance | Biodiesel characteristics same as B20 Biodiesel an                                                                                                                                                                          | d Heating Oil scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cost        | <ul> <li>Capability to burn B100 requires upgrade cost of<br/>\$1,045 per oil boiler or furnace, annualized over<br/>equipment's lifetime</li> <li>Fuel costs same as B20 Biodiesel and Heating Oil<br/>scenario</li> </ul> | <ul> <li>Residential oil furnaces cost of \$4,125, lasting 26 years with annual maintenance of \$70</li> <li>Residential oil boilers cost of \$9,125, lasting 23 years with annual maintenance of \$140</li> <li>Commercial oil furnaces serve 10,933 ft² with installed cost of \$6,600, lasting 23 years with annual maintenance of \$300</li> <li>Commercial oil boilers serve 22,667 ft² with installed cost of \$31,500, lasting 25 years with annual maintenance of \$2,300</li> </ul> |

### Variant: B100 Biodiesel in Industry

|             | Scenario Changes                                                                                                 | Business-as-Usual Comparison                                                                     |
|-------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>By 2040, industrial diesel consumption reaches<br/>100% biodiesel (B100)</li> </ul>                     | <ul> <li>Industry consumes 4.0%-by-volume<br/>biodiesel blend, rising to 7.5% by 2050</li> </ul> |
| Performance | Biodiesel characteristics same as B20 Biodiesel and Heating Oil scenario                                         |                                                                                                  |
| Cost        | <ul> <li>Fuel costs same as B20 Biodiesel and Heating Oil s</li> <li>No additional costs are included</li> </ul> | scenario                                                                                         |

### Variant: B100 Biodiesel in Heavy Transport

|             | Scenario Changes                                                                                                                               | Business-as-Usual Comparison                                                                                     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>By 2040, diesel consumption for heavy-duty<br/>road transport reaches 100% biodiesel (B100)</li> </ul>                                | <ul> <li>Transport consumes 4.0%-by-volume<br/>biodiesel blend, rising to 7.5% by 2050</li> </ul>                |
| Performance | Biodiesel characteristics same as B20 Biodiesel and Heating Oil scenario                                                                       |                                                                                                                  |
| Cost        | <ul> <li>Capability to burn B100 costs \$15,000 more per vehicle</li> <li>Fuel costs same as B20 Biodiesel and Heating Oil scenario</li> </ul> | <ul> <li>Existing equipment assumed to operate using limited biodiesel blends without additional cost</li> </ul> |

### **Sustainable Aviation Fuel**

|             | Scenario Changes                                                                                                                                            | Business-as-Usual Comparison                                                                                                                           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | By 2050, drop-in biofuels displace 50% of jet kerosene                                                                                                      | <ul> <li>No drop-in biofuels - jet kerosene meets</li> <li>96% of aviation energy demand (remainder is aviation gasoline for small engines)</li> </ul> |
| Performance | • Aviation biofuel emits "biogenic" carbon dioxide,                                                                                                         | which is assigned a GWP of zero                                                                                                                        |
| Cost        | <ul> <li>Drop-in aviation biofuel costs 37.3 USD/MMBTU</li> <li>Existing aircraft assumed to operate using drop-in fuels without additional cost</li> </ul> | <ul> <li>Jet kerosene costs 15.4 USD/MMBTU in<br/>2019, rising to 22.5 USD/MMBTU in 2050</li> </ul>                                                    |

### Renewable Gas in Industry

|             | Scenario Changes                                                                                                                                                                       | Business-as-Usual Comparison                                                                       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>10%/20%/80% of (fossil) natural gas consumed<br/>for industrial uses is displaced by renewable<br/>natural gas (RNG) or biogas by 2025/2030/2050,<br/>respectively</li> </ul> | <ul> <li>Renewable natural gas not consumed in industry</li> </ul>                                 |
| Performance | • RNG emits "biogenic" carbon dioxide, which is ass                                                                                                                                    | signed a GWP of zero                                                                               |
| Cost        | <ul> <li>RNG costs 30 USD/MMBTU</li> <li>Existing equipment assumed to operate using<br/>RNG without equipment additional cost</li> </ul>                                              | <ul> <li>Natural gas costs 7.63 USD/MMBTU in 2019,<br/>rising to 9.43 USD/MMBTU in 2050</li> </ul> |

### Renewable Gas in Buildings

|             | Scenario Changes                                                                                                                                                                                                                                                                                                                                                      | Business-as-Usual Comparison                                                                       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>Variant 1: 5%/15%/25% of (fossil) natural gas consumed for residential and commercial building uses is displaced by renewable natural gas (RNG) by 2025/2030/2050, respectively</li> <li>Variant 2: 10%/20%/80% of (fossil) natural gas consumed for residential and commercial building uses is displaced by RNG by 2025/2030/2050, respectively</li> </ul> | <ul> <li>Renewable natural gas not consumed in buildings</li> </ul>                                |
| Performance | • RNG emits "biogenic" carbon dioxide, which is ass                                                                                                                                                                                                                                                                                                                   | signed a GWP of zero                                                                               |
| Cost        | <ul> <li>RNG costs 30 USD/MMBTU</li> <li>Existing equipment assumed to operate using<br/>RNG without additional cost</li> </ul>                                                                                                                                                                                                                                       | <ul> <li>Natural gas costs 7.63 USD/MMBTU in 2019,<br/>rising to 9.43 USD/MMBTU in 2050</li> </ul> |

## **Renewable Electricity**

|             | Scenario Changes                                                                                                                                                                                                                                                                                            | Business-as-Usual Comparison                                                                                                                                                                                          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>Variant 1: From 2032 to 2041, Renewable Energy Standard increases to 100%, affecting the mix of capacity (MW) and energy (MWh)</li> <li>Existing Hydro-Quebec import contract is renewed after 2038</li> <li>Variant 2: Over twice as much behind-the-meter solar capacity as Variant 1</li> </ul> | <ul> <li>Vermont's existing Renewable Energy         Standard is met in each year, reaching 75%         by 2032 (no change thereafter)     </li> <li>Existing Hydro-Quebec import contract ends after 2038</li> </ul> |
| Performance | <ul> <li>Average electric production efficiency, emissions intensity is calculated internally within the model<br/>based on performance characteristics of each electric generation technology</li> </ul>                                                                                                   |                                                                                                                                                                                                                       |
| Cost        | <ul> <li>Cost is calculated internally within the model based on capital, operation &amp; maintenance and fuel<br/>cost assumptions for electric generation technologies</li> </ul>                                                                                                                         |                                                                                                                                                                                                                       |

### **Reduced Hydro-Quebec Imports**

|             | Scenario Changes                                                                                                                                                                                                 | Business-as-Usual Comparison                                                                                                                                                          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturation  | Hydro-Quebec import contract ends in 2030                                                                                                                                                                        | <ul> <li>Existing Hydro-Quebec import contract ends<br/>after 2038</li> </ul>                                                                                                         |
| Performance | <ul> <li>Vermont imports 1.22 TWh/year from Hydro-Quebec until 2030</li> <li>Any other Hydro-Quebec energy in New England after 2030 is counted as part of the remainder of ISO-NE system mix</li> </ul>         | <ul> <li>Vermont imports 1.22 TWh/year from<br/>Hydro-Quebec until 2038</li> <li>Electricity from Hydro-Quebec is eligible to<br/>meet Vermont's Renewable Energy Standard</li> </ul> |
| Cost        | <ul> <li>Cost is calculated internally within the model<br/>based on capital, operation &amp; maintenance and<br/>fuel cost assumptions for electric generation<br/>technologies without Hydro-Quebec</li> </ul> | <ul> <li>Imported electricity assumed to cost<br/>\$40/MWh</li> </ul>                                                                                                                 |

## **Managed EV Charging**

|             | Scenario Changes                                                                                                                                                                                                                                                            | Business-as-Usual Comparison                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Saturation  | <ul> <li>Variant 1: By 2040, 50% of all electric vehicles (including PHEVs) are charged slowly while plugged in, resulting in a flatter load profile</li> <li>Variant 2: By 2040, 80% of all electric vehicles (including PHEVs) participate in managed charging</li> </ul> | All electric vehicles charge as fast as possible while plugged in                            |
| Performance | <ul> <li>Managed charging load curve from EVI-Pro Lite, peaks at 01:00 on weekdays during winter, generally with more charging occurring overnight</li> <li>No other changes to EV performance</li> </ul>                                                                   | <ul> <li>GMP data show charging load peaks at<br/>21:00 on weekdays during winter</li> </ul> |
| Cost        | <ul> <li>No additional costs are assumed</li> </ul>                                                                                                                                                                                                                         |                                                                                              |

### **Detail: EV Charging Energy Use**



<sup>\*</sup> Percentage of annual energy demand (not load) accounts for greater number of hours during weekdays, hence higher values.

### Vehicle-to-Grid (V2G) Battery Storage

|             | Scenario Changes                                                                                                                                                                                                                                          | Business-as-Usual Comparison |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Saturation  | <ul> <li>By 2040, 15% of light-duty mid- and high-range<br/>BEVs (generally &gt;150 miles per charge)<br/>participate in vehicle-to-grid discharging</li> </ul>                                                                                           | • No V2G                     |
| Performance | <ul> <li>Each participating EV treated as a 10 kW battery storing 68 kWh</li> <li>70% minimum charge maintained</li> <li>Availability of V2G batteries estimated from (unmanaged) EV charging profile, indicating when vehicles are plugged in</li> </ul> |                              |
| Cost        | <ul> <li>Additional \$5,000 per participating EV for V2G-<br/>capable charging station</li> </ul>                                                                                                                                                         |                              |

### **Non-Energy Sector Mitigation Options**

The following reductions are included, based on estimates in each sector from state agencies and from EFG/Cadmus:

- From agriculture:
  - Agricultural soil carbon sequestration reaches -98,557 MTCO<sub>2</sub>e/year by 2050
  - Dietary changes reduce enteric fermentation CH<sub>4</sub> by 20% in 2035 and 30% by 2040, compared to Business-as-Usual
  - Digesters reduce manure management CH<sub>4</sub> by 30% in 2030, compared to Business-as-Usual
- From waste:
  - SEI assumes that by 2050, 50% reduction in  $CH_4$  is achievable from wastewater gas flaring
- From industrial processes and product use:
  - Emissions from ozone-depleting substances decline to 164,590 MTCO<sub>2</sub>e/year by 2029, followed by continued declining trend of -4.9%/year
  - Emissions from semiconductor manufacture decline to 179,000 MTCO<sub>2</sub>e/year by 2030
- No change from business-as-usual land use, land-use change and forestry carbon sink projection

**Individual Mitigation Options** 

## **Mitigation Scenarios**

### **Scenario Hierarchy**

Business-as-Usual Central Mitigation Scenario

**Biofuel Emphasis** 

Mitigation scenarios combine individual measures to achieve Vermont's GWSA targets.

| Year | GHG Target     | Gross* GHG Target<br>[MMTCO₂e/yr] |
|------|----------------|-----------------------------------|
| 2025 | 26%-below-2005 | 7.48                              |
| 2030 | 40%-below-1990 | 5.18                              |
| 2050 | 80%-below-1990 | 1.73                              |

Local Electricity
Resources

<sup>\*</sup>Gross emissions exclude the carbon sink from by land use, land-use change and forestry

### **Central Mitigation Scenario**

### Also called "CAP Mitigation Scenario" by EFG/Cadmus

#### **Includes:**

- Building Shell Improvements (variant 2)
- Clean Cooking
- Heat Pump Water Heating
- Heat Pump Residential Space Conditioning (variant 1)
- Heat Pump Commercial Space Conditioning (variant 1)
- Advanced Wood Heating (variant 1)
- Commercial District Heating
- Renewable Gas in Buildings (variant 1)
- Renewable Gas in Industry
- Phasing Out Internal Combustion Engines (variant 1)

- E15 in Transport
- B20 in Transport and Heating Oil
- VMT Reductions
- Sustainable Aviation Fuel
- B100 in Industry
- Renewable Electricity (variant 1)
- Managed EV Charging (variant 1)
- Non-energy mitigation options

### **Biofuel Emphasis Scenario**

#### **Includes:**

- Building Shell Improvements (variant 2)
- Clean Cooking
- Heat Pump Water Heating
- Heat Pump Residential Space Conditioning (variant 2, reduced)
- Heat Pump Commercial Space Conditioning (variant 2, reduced)
- Advanced Wood Heating (variant 2, increased)
- Commercial District Heating
- Renewable Gas in Buildings (variant 2, increased)
- Renewable Gas in Industry

- Phasing Out Internal Combustion Engines (variant 2, reduced)
- E15 in Transport
- B100 in Heating Oil
- B100 in Heavy-Duty Transport (B20 in remaining transport)
- VMT Reductions
- Sustainable Aviation Fuel
- B100 in Industry
- Renewable Electricity (variant 1)
- Managed EV Charging (variant 1)
- Non-energy mitigation options

### **Local Electricity Resources Scenario**

#### **Includes:**

- Building Shell Improvements (variant 2)
- Clean Cooking
- Heat Pump Water Heating
- Heat Pump Residential Space Conditioning (variant 1)
- Heat Pump Commercial Space Conditioning (variant 1)
- Advanced Wood Heating (variant 1)
- Commercial District Heating
- Renewable Gas in Buildings (variant 1)
- Renewable Gas in Industry
- Phasing Out Internal Combustion Engines (variant 1)

- E15 in Transport
- B20 in Transport and Heating Oil
- VMT Reductions
- Sustainable Aviation Fuel
- B100 in Industry
- Renewable Electricity (variant 2, more BTM PV)
- Managed EV Charging (variant 2, increased)
- Non-energy mitigation options
- Reduced Hydro-Quebec Imports
- V2G Battery Storage

### **Energy Demand in Central Mitigation Scenario**





### **Energy Demand in Biofuel Emphasis Scenario**





## **Energy Demand in Local Electricity Resources Scenario**





# Detail: Transport Demand in Central Mitigation Scenario





## Detail: Transport Demand in Central Mitigation Scenario





<sup>\*</sup> Alternative fuels include LNG, CNG, propane, E85 and natural gas fuel cell

### **Detail: Vehicle Types in Two Mitigation Scenarios**







### **Detail: Battery Electric Vehicle Stock Comparison**





# Detail: Urban Household Demand in Central Mitigation Scenario



### Energy Demand (and avoided demand vs. BAU) by Urban Household Type in 2050



# Detail: Rural Household Demand in Central Mitigation Scenario



### Energy Demand (and avoided demand vs. BAU) by Rural Household Type in 2050



# Detail: Household Space Heating Demand in Central Mitigation Scenario





# Detail: Commercial Demand in Central Mitigation Scenario



<sup>\* &</sup>quot;Other Oil", in the context of these charts, includes ethanol blended with gasoline

# Detail: Commercial Space Heating Demand in Central Mitigation Scenario





<sup>\*</sup> Different heat pump technologies are not resolved in the commercial sector. One heat pump serves approximately 500 square feet of commercial space.

# Detail: Industrial Demand in Central Mitigation Scenario



### **Electricity Mix in Central Mitigation Scenario**



<sup>\*</sup> Electricity requirements illustrate Vermont demand plus transmission and distribution loss. Additional electricity production is considered surplus – it may be exported or curtailed.

### **Electricity Mix in Biofuel Emphasis Scenario**



# **Electricity Mix in Local Electricity Resources Scenario**



### **Detail: Sector Contributions to Electric Load**







# Peak System-Wide Load

- New electric technologies (heat pumps, EVs) with fixed load shapes drive evolution of peak system load:
  - In *magnitude*, and
  - In timing.
- Load is met using electricity supply resources, including behind-the-meter (BTM) PV





# Detail: Peak System-Wide Load, Adjusted



Based on guidance from PSD, adjusted net load removes BTM PV and 75% of EV charging demand at the time that system peak occurs.

Net load is measured forward-of-the-meter, accounting for 8% transmission and distribution loss.

# Renewable Energy





<sup>\*</sup> RCI = Residential, commercial and industrial sectors, combined.

Includes renewable portion (where applicable) of electricity, distributed gas and heating oil.

2020 and 2050 (BAU Scenario) Comparison

#### **Energy Flows in 2020**



#### **Energy Flows in 2050, BAU**



2020 and 2050 (Central Mitigation Scenario) Comparison

#### **Energy Flows in 2020**



#### **Energy Flows in 2050, Central Mitigation**



2020 and 2050 (Biofuel Emphasis Scenario) Comparison

#### **Energy Flows in 2020**



#### **Energy Flows in 2050, Biofuel Emphasis**



2020 and 2050 (Local Electricity Resources Scenario) Comparison

#### **Energy Flows in 2020**



#### **Energy Flows in 2050, Local Electricity**



## **GHG Emissions, Central Mitigation**



# **GHG Emissions, Biofuels Emphasis**



# **GHG Emissions, Local Electricity Resources**



## Remaining GHG Emissions in 2050



<sup>\* &</sup>quot;Proportional Reductions" shows GWSA targets applied to each sector individually. Proportional emissions for residential, commercial and industrial sectors cannot be disaggregated because they are combined in 1990 GHG inventory.

# **Emissions Intensity of Electricity Consumption**



<sup>\* &</sup>quot;Proportional Reductions" shows GWSA targets applied to each sector individually. Proportional emissions for residential, commercial and industrial sectors cannot be disaggregated because they are combined in 1990 GHG inventory.

### **Non-GHG Pollutant Emissions**



### NMVOC Emissions from All Sectors



### **Non-GHG Pollutant Emissions**





### **Non-GHG Pollutant Emissions**

#### **Sulfur Dioxide Emissions from All Sectors**



#### **Black Carbon Emissions from All Sectors**



### **Net Present Value by Scenario**

Near Term, to 2030 Only



<sup>\*</sup> Negative values indicate cost savings in a mitigation scenario, relative to BAU. A 2% discount rate is used for NPV calculations. Gross of all federal or state purchase incentives.

# **Net Mitigation Cost**



<sup>\*</sup> Negative values indicate cost savings in the mitigation scenario, relative to BAU. Costs are real 2019 USD. Gross of all federal or state purchase incentives.